This function is not yet fully documented. This is a transcript of the text-formatted help.

bbsolve  Compute an unregularized solution for A*X=B.
   bbsolve computes an approximate solution for a linear system.


   X=bbsolve(S) computes the solution from the result of bbpresolve.
   bbsolve(A,B) is the same as bbsolve(bbpresolve(A,B,false)), and
   bbsolve(A,B,OPT) is the same as bbsolve(bbpresolve(A,B,OPT)).

   For a list of options, please see bbsolveopt.

   [X,Z]=bbsolve(A,B) also returns a vector in the null-space, if
   one was identified during the iterative procedure (otherwise it
   will be the scalar zero). In this case we have the approximation
   A*X+Z=B, where norm(A'*Z) vanish.

   [X,Z,R] also returns the residual, so that norm((A*X+Z+R)-B) should
   be small. The difference between R and A*X+Z-B consists of rounding
   errors commited by the iterative solver. If the solver converged, this
   should satisfy norm(R)/norm(B)<=OPT.tol.

   See also bbsolveopt, bbpresolve, bbregsolve.